Spike Frequency Adaptation in Neurons of the Central Nervous System

نویسندگان

  • Go Eun Ha
  • Eunji Cheong
چکیده

Neuronal firing patterns and frequencies determine the nature of encoded information of the neurons. Here we discuss the molecular identity and cellular mechanisms of spike-frequency adaptation in central nervous system (CNS) neurons. Calcium-activated potassium (KCa) channels such as BKCa and SKCa channels have long been known to be important mediators of spike adaptation via generation of a large afterhyperpolarization when neurons are hyper-activated. However, it has been shown that a strong hyperpolarization via these KCa channels would cease action potential generation rather than reducing the frequency of spike generation. In some types of neurons, the strong hyperpolarization is followed by oscillatory activity in these neurons. Recently, spike-frequency adaptation in thalamocortical (TC) and CA1 hippocampal neurons is shown to be mediated by the Ca2+-activated Cl- channel (CACC), anoctamin-2 (ANO2). Knockdown of ANO2 in these neurons results in significantly reduced spike-frequency adaptation accompanied by increased number of spikes without shifting the firing mode, which suggests that ANO2 mediates a genuine form of spike adaptation, finely tuning the frequency of spikes in these neurons. Based on the finding of a broad expression of this new class of CACC in the brain, it can be proposed that the ANO2-mediated spike-frequency adaptation may be a general mechanism to control information transmission in the CNS neurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calcium-activated chloride channels: a new target to control the spiking pattern of neurons

The nature of encoded information in neural circuits is determined by neuronal firing patterns and frequencies. This paper discusses the molecular identity and cellular mechanisms of spike-frequency adaptation in the central nervous system (CNS). Spike-frequency adaptation in thalamocortical (TC) and CA1 hippocampal neurons is mediated by the Ca2+-activated Cl- channel (CACC) anoctamin-2 (ANO2)...

متن کامل

JN-00104-2003.R1 Functional roles of an ERG current isolated in cerebellar Purkinje neurons

Transcripts encoding ERG potassium channels are expressed by most neurons of the central nervous system. By patch-clamp whole-cell recording from Purkinje neurons in slices of young (5-9 days old) mouse cerebellum we have been able to isolate a tail current (IK(ERG)) with the same characteristics as previously described for ERG channels. In zero external Ca and high K (40 mM) the V1/2 of activa...

متن کامل

P176: Neurological Diseases: Causes, Symptoms and Treatments

The nervous system is an extremely complex communication system that can send and receive large amounts of information simultaneously. The nervous system has two distinct parts: the central nervous system (the brain and the spinal cord) and the peripheral nervous system (the nerves located outside the brain and spinal cord). The main unit of the nervous system is neural cells (neurons). The rou...

متن کامل

A neural mass model of CA1-CA3 neural network and studying sharp wave ripples

We spend one third of our life in sleep. The interesting point about the sleep is that the neurons are not quiescent during sleeping and they show synchronous oscillations at different regions. Especially sharp wave ripples are observed in the hippocampus. Here, we propose a simple phenomenological neural mass model for the CA1-CA3 network of the hippocampus considering the spike frequency adap...

متن کامل

Low-frequency Stimulation Decreases Hyperexcitability through Adenosine A1 Receptors in the Hippocampus of Kindled Rats

Introduction: In this study, the role of A1 adenosine receptors in improving the effect of Low-Frequency Electrical Stimulation (LFS) on seizure-induced hyperexcitability of hippocampal CA1 pyramidal neurons was investigated. Methods: A semi-rapid hippocampal kindling model was used to induce seizures in male Wistar rats. Examination of the electrophysiological properties of CA1 pyramidal neur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2017